

Maharaja Agrasen Institute of Technology

(Approved by AICTE & Affiliated to GGSIP University, New Delhi) PSP area, Plot No.-1 Sector-22, Rohini, New Delhi – 110085

Ph.No.: 011-27582095, 65151162/63, 65162001

Website: www.mait.ac.in

Department of Electrical & Electronics Engineering

Electrical Machines – II Theory (EEC210)

ACADEMIC PLAN FOR SEMESTER-IV 2022

S.No.	TOPICS TO BE COVERED	Total No. of Lectures (42)	CO	
	UNIT-I (SYNCHRONOUS GENERATORS)			
1	Synchronous Alternators Constructional features, armature windings., E.M.F. equation, winding coefficients, harmonics in the induced E.M.F.,	2		
2	armature reaction ,O.C. and S.C. tests, voltage regulation-	2		
3	Synchronous impedance method, MMF Method, Potier's triangle method	2	CO1	
4	parallel operation, operation on infinite bus, cooling	2		
	Two reaction theory, power expressions for cylindrical and salient pole machines, performance characteristics.	3		
	UNIT-II (Poly phase induction machines)			
7	Poly phase Induction Machines Constructional features,	3		
	production of rotating magnetic field, working of 3- phase			
	Induction motor cogging and crawling,			
8	phasor diagram, equivalent circuit, power and torque relations, torque and slip relations	2	CO2	
9	operation of Induction machine as generator and phasor diagram, no load and blocked rotor tests and efficiency	2		
10	speed control by rotor resistance, injected e.m.f, frequency variation and pole changing,	2		

11	DOL, Y- Δ and autotransformer starters, deep bar and double	2			
	cage rotor motors,				
	After Mid Term				
	UNIT-III(synchronous motors)				
13	Synchronous Motors – Principle of operation, starting methods,	2			
14	phasor diagram torque-angle characteristics	2			
15	V-curves hunting and damping	2	CO3		
16	synchronous condenser, introduction to single phase	2			
	synchronous motors				
17	Reluctance and Hysteresis motor	2			
	UNIT-IV(Fractional Horse Power Motors)				
18	Single Phase Induction Motor: Double revolving field theory,	2			
	equivalent circuit, no load and blocked rotor tests,				
19	starting methods, split phase Induction motor- capacitor start,	3	CO4		
	two value capacitor motor.		CO4		
20	Introduction and applications of single phase AC series motor,	2			
	universal motor,				
21	AC servo motor, stepper motor, permanent magnet AC motors.	3			

Course Objectives

C.210.1	To understand the concept of synchronous generator
C.210.2	To understand the concept of three phase induction motor.
C.210.3	To understand the concept of synchronous motor.
C.210.4	To understand the concept of single phase motor.