Paper- Electrical Machines Lab-I

0 2 1

Course Outcome:		
At the end of the course student will be able to:		
CO.EEC.257.1	impart the knowledge of magnetic circuit and EMEC devices.	
CO.EEC.257.2	understand the concept of DC machines.	
CO.EEC.257.3	impart the knowledge of single phase transformer.	
CO.EEC.257.4	impart the knowledge of three phase transformer	

List of Experiments:

- 1. To study the construction and operation of various types of starters available in the laboratory for starting DC motors.
- 2. To study the magnetization characteristics of a separately excited D.C generator at different speeds and to find the critical field resistance at those speeds.
- 2. To perform the load test on D.C. shunt motor and to draw the performance characteristics.
- 3. To control the speed of a DC shunt motor by using
- (a) Field control
- (b) Armature/Rheostatic control
- (c) Supply voltage control
- 4. To perform the Swinburne's test on a D.C. shunt Machine and to pre determine its efficiency when running as a motor as well as generator and also draw the characteristic curves.
- 5. To conduct load test on DC shunt generator and obtain its internal and external characteristics.
- 6. To perform O.C./S.C. tests on a single phase transformer and determine equivalent circuit parameters.
- 7. To perform Sumpner's (back to back) test on two identical single phase transformers and draw the load efficiency graphs.
- 8. To perform load test on a single-phase transformer and determine the following:
- (a) Voltage ratio of transformer.
- (b) Efficiency at different loads.
- (c) Voltage regulation of the transformer.
- 9. To perform Polarity test on two single-phase transformers, connect them in parallel and study the load sharing between them.
- 10. To convert a three-phase supply into two phase supply using Scott-connection between two single phase transformers with suitable tapping. Verify the following:
- (a) Turn ratio between windings of main and teaser transformers.
- (b) Voltage of both phases of two phase supply is equal.
- (c) Whether the phase angle between them is 900.
- 11. To connect three-phase transformers in Y- Y / Y Δ , Δ - Δ / Δ Y connections and study line /phase voltage relationships.

NOTE:- Atleast 10 experiments must be performed by the students, they may be asked to do more. Atleast 5 experiments must be from the given list.

Title of Lab Experiments Sr. No. CO To study the construction and operation of various types of starters available in 1. CO1, CO2 the laboratory for starting DC motors. To study the magnetization characteristics of a separately excited D.C generator 2. CO1, CO2 at different speeds and to find the critical field resistance at those speeds. 3 To perform the load test on D.C. shunt motor and to draw the performance characteristics. 4. To control the speed of a DC shunt motor by using CO1, CO2 (a) Field control (b) Armature/Rheostatic control (c) Supply voltage control

Electrical and Electronics Engineering Department

	Electrical and Electronics Engineering	ig Departifient
5.	To perform the Swinburne's test on a D.C. shunt Machine and to pre determine	CO1, CO2
	its efficiency when running as a motor as well as generator and also draw the	
	characteristic curves.	
6.	To conduct load test on DC shunt generator and obtain its internal and external	CO1, CO2
	characteristics.	
7.	To perform O.C./S.C. tests on a single phase transformer and determine	CO1, CO3
	equivalent circuit parameters.	
8.	To perform Sumpner's (back to back) test on two identical single phase	CO1, CO3
	transformers and draw the load efficiency graphs.	
9.	To perform load test on a single-phase transformer and determine the following:	CO1, CO3
	(a) Voltage ratio of transformer.	
	(b) Efficiency at different loads.	
	(c) Voltage regulation of the transformer.	
10	To perform Polarity test on two single-phase transformers, connect them in	CO1,CO3
	parallel and study the load sharing between them.	
Extra 1	To convert a three-phase supply into two phase supply using Scott-connection	CO1, CO4
	between two single phase transformers with suitable tapping. Verify the	
	following:	
	(a) Turn ratio between windings of main and teaser transformers.	
	(b) Voltage of both phases of two phase supply is equal.	
	(c) Whether the phase angle between them is 900.	
Extra 2	To connect three-phase transformers in Y- Y / Y - Δ , Δ - Δ / Δ - Y connections and	CO1, CO4
	study line /phase voltage	
	relationships.	
	1	1